این بخش با هدف ترویج محتوای آموزشی حوزه هوش مصنوعی ایجاد شده است.
کاربرد هوش مصنوعی در علوم پزشکی و سلامت
هوش منصوعی میتواند به پردازش دادههای پزشکی کمک کند و به متخصصان پزشکی بینشهای مهمی بدهد، نتایج سلامتی و تجربیات بیمار را بهبود بخشد.
کاربرد هوش مصنوعی در علوم پزشکی استفاده از مدلهای یادگیری ماشینی برای جستجوی دادههای پزشکی و کشف دیدگاه ها برای کمک به بهبود نتایج سلامت و تجربیات بیمار است. به لطف پیشرفت های اخیر در علوم کامپیوتر و انفورماتیک، هوش مصنوعی (AI) به سرعت به بخشی جدایی ناپذیر از مراقبت های بهداشتی مدرن تبدیل می شود. الگوریتمهای هوش مصنوعی و سایر برنامههای کاربردی مجهز به هوش مصنوعی برای حمایت از متخصصان پزشکی در محیطهای بالینی و تحقیقات در حال انجام،استفاده میشوند.
در حال حاضر، رایج ترین کاربرد هوش مصنوعی در علوم پزشکی در تنظیمات پزشکی، پشتیبانی تصمیم گیری بالینی و تجزیه و تحلیل تصویربرداری است. ابزارهای پشتیبانی تصمیم بالینی به ارائهدهندگان خدمات سلامت کمک میکنند تا با فراهم کردن دسترسی سریع به اطلاعات یا تحقیقات مرتبط با بیمار، درباره درمانها، داروها، سلامت روان و سایر نیازهای بیمار تصمیمگیری کنند. در تصویربرداری پزشکی، ابزارهای هوش مصنوعی برای تجزیه و تحلیل سی تی اسکن، اشعه ایکس، MRI و سایر تصاویر برای ضایعات یا سایر یافتههایی که رادیولوژیست انسانی ممکن است از دست بدهد، استفاده میشود.
چالشهایی که همهگیری COVID-19 برای بسیاری از سیستمهای بهداشتی ایجاد کرد، همچنین بسیاری از سازمانهای مراقبتهای بهداشتی در سراسر جهان را به آزمایش میدانی فناوریهای جدید پشتیبانی شده از هوش مصنوعی، مانند الگوریتمهای طراحیشده برای کمک به نظارت بر بیماران و ابزارهای مجهز به هوش مصنوعی برای غربالگری COVID-19 سوق داد.
تحقیقات و نتایج این آزمایشات هنوز در حال جمع آوری است و استانداردهای کلی برای کاربرد هوش مصنوعی در علوم پزشکی هنوز در حال تعریف است. با این حال، فرصتهای هوش مصنوعی برای بهرهمندی از پزشکان، محققان و بیمارانی که به آنها خدمات میدهند به طور پیوسته در حال افزایش است. در این مرحله، تردید کمی وجود دارد که هوش مصنوعی به بخش اصلی سیستمهای سلامت دیجیتالی تبدیل خواهد شد که پزشکی مدرن را شکل داده و از آن پشتیبانی میکند.
کاربرد هوش مصنوعی در علوم پزشکی و حوزه سلامت
روشهای متعددی وجود دارد که کاربرد هوش مصنوعی در علوم پزشکی میتواند تأثیر مثبتی بر عملکرد پزشکی داشته باشد، از طریق افزایش سرعت تحقیقات یا کمک به پزشکان در تصمیمگیری بهتر.
در اینجا چند نمونه از نحوه استفاده از هوش مصنوعی آورده شده است:
- تشخیص دقیق بیماریهایکی از مهمترین کاربرد هوش مصنوعی در علوم پزشکی ، تشخیص دقیق بیماریها از طریق تصاویر پزشکی مانند تصاویر رادیولوژی است. با استفاده از الگوریتمهای یادگیری عمیق، ماشینها قادر به تحلیل و تشخیص تصاویر به گونهای هستند که حتی پزشکان حرفهای نیز نمیتوانند انجام دهند. این امکان باعث میشود که تشخیص وقوع بیماریها مانند سرطان در مراحل ابتدایی تر و با دقت بالاتری انجام شود.
- درمان شخصیسازی شدهیکی دیگر از کاربرد هوش مصنوعی در علوم پزشکی، درمان شخصیسازی شده برای هر بیمار است. با تجزیه و تحلیل دقیق دادههای پزشکی و اطلاعات شخصی بیمار، میتوان به ارائه راههای درمانی مناسب برای هر فرد به شکل دقیقتری پرداخت. به عنوان مثال، درمانهای سرطان با توجه به خصوصیات ژنتیکی هر بیمار میتواند بهبود یافته و احتمال موفقیت درمان بالاتر رود.
- پیشبینی و پیشگیری از بیمارییکی از جنبههای جالب کاربرد هوش مصنوعی در علوم پزشکی، توانایی پیشبینی بیماریها و مشکلات سلامتی است. با تحلیل دادههای بزرگ و اطلاعات پزشکی از بیماران، الگوریتمهای هوش مصنوعی میتوانند الگوهای پنهان در دادهها را شناسایی کرده و به پزشکان کمک کنند تا با اقدامات پیشگیرانه، احتمال وقوع بیماریها را کاهش دهند. این اقدامات میتوانند بهبود سطح سلامتی جامعه را به دنبال داشته باشند.
- هوش مصنوعی در تصویربرداری پزشکیکاربرد هوش مصنوعی در علوم پزشکی در حال حاضر نقش برجسته ای در تصویربرداری پزشکی ایفا می کند. تحقیقات نشان داده است که هوش مصنوعی با استفاده از شبکه های عصبی مصنوعی می تواند به اندازه رادیولوژیست های انسانی در تشخیص علائم سرطان سینه و همچنین سایر شرایط موثر باشد. علاوه بر کمک به پزشکان در تشخیص علائم اولیه بیماری، هوش مصنوعی همچنین میتواند با شناسایی بخشهای حیاتی از تاریخچه بیمار و ارائه تصاویر مربوطه به آنها، تعداد خیرهکننده تصاویر پزشکی را که پزشکان باید پیگیری کنند، را فراهم کند.
مزایای هوش مصنوعی در حوزه پزشکی
۱- مراقبت آگاهانه از بیمار
کاربرد هوش مصنوعی در علوم پزشکی در گردش کار پزشکان می تواند زمینه ارزشمندی را در حالی که ارائه دهندگان در حال تصمیم گیری در مورد مراقبت هستند فراهم کند. یک الگوریتم یادگیری ماشینی آموزشدیده میتواند با ارائه نتایج جستجوی ارزشمند به پزشکان با بینشهای مبتنی بر شواهد در مورد درمانها و روشها در حالی که بیمار هنوز در اتاق با آنها است، به کاهش زمان تحقیق کمک کند.
۲- کاهش خطا
شواهدی وجود دارد که نشان می دهد هوش مصنوعی می تواند به بهبود ایمنی بیمار کمک کند. یک بررسی سیستمیک اخیر از 53 مطالعه بررسی شده که تأثیر هوش مصنوعی بر ایمنی بیمار را بررسی میکرد، نشان داد که ابزارهای پشتیبانی تصمیمگیری مبتنی بر هوش مصنوعی میتوانند به بهبود تشخیص و مدیریت دارو کمک کنند.
۳- کاهش هزینه های مراقبت
راه های بالقوه زیادی وجود دارد که هوش مصنوعی می تواند هزینه ها را در سراسر صنعت مراقبت های بهداشتی کاهش دهد. برخی از امیدوارکنندهترین فرصتها عبارتند از:
کاهش خطاهای دارویی، کمکهای بهداشتی مجازی و حمایت از جریان کار اداری و بالینی کارآمدتر.
۴- افزایش تعامل پزشک و بیمار
بسیاری از بیماران خارج از ساعات کاری معمولی به سؤالاتی فکر می کنند. هوش مصنوعی میتواند به ارائه پشتیبانی شبانهروزی از طریق رباتهای چت کمک کند که میتوانند به سؤالات اساسی پاسخ دهند و در مواقعی که دفتر پزشک آنها باز نیست، منابعی را در اختیار بیماران قرار دهد. هوش مصنوعی همچنین میتواند بهطور بالقوه برای تریاژ (الویت بندی بالینی)سوالات و پرچمگذاری اطلاعات برای بررسی بیشتر مورد استفاده قرار گیرد، که میتواند به ارائهدهندگان سلامت در مورد تغییرات سلامتی که نیاز به توجه بیشتری دارند هشدار دهد.
۵- ارائه ارتباط متنی
یکی از مزیت های اصلی یادگیری عمیق این است که الگوریتم های هوش مصنوعی می توانند از زمینه قبلی بیمار برای تمایز بین انواع مختلف اطلاعات استفاده کنند. برای مثال، اگر یک یادداشت بالینی شامل فهرستی از داروهای فعلی بیمار به همراه داروی جدیدی باشد که پزشک آنها توصیه میکند، یک الگوریتم هوش مصنوعی آموزشدیده میتواند از پردازش زبان طبیعی برای شناسایی داروهایی که در تاریخچه پزشکی بیمار تعلق دارند استفاده کند.